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DYNAMICS OF THE BEHAVIOR OF A GAS-BUBBLE 

NUCLEUS IN A HETEROPHASE MEDIUM 

V. N. Popov and A. N. Cherepanov UDC 669.18:532.529 

The behavior of the nucleus of a gas bubble in a heterophase medium is an important 
problem in the investigation of the evolution of gas-shrinkage porosity in alloys crystal- 
lized in a certain tamperature interval [1-4] and in a study of dynamical and mass-transfer 
phenomena in gas-liquid systems moving through a porous disperse media [5-8]. The general 
solution of this type of problem under the conditions of inhomogeneity of the temperature 
and concentration fields and in the presence of convection motions of the liquid phase 
poses a complicated mathematical problem. We therefore confine the ensuing discussion to 
a simplified mathematical model of the growth of the nucleus of a gas bubble in a homo- 
geneous quasiequilibrium zone of a binary alloy [9], gene•lizing the solution to the case 
of the growth of a gas bubble in an isothermal liquid-saturated porous disperse medium. 

We consider the crystallization of a binary alloy containing dissolved gas. We assume 
that the volume occupied by the alloys is small enough for the internal thermal resistance 
of the substance to be neglected in comparison with the external thermal resistance and 
for the crystallization of the alloy to be regarded as a volume process. We neglect 
shrinkage effects in crystallization, assuming that the nucleation of a bubble isassociated 
with the displacement of dissolved gaseous component by the growing solid phase, while 
the motion of the melt is elicited by the variation of the gas-bubble radius due to gas 
diffusion from the intercrystalline liquid. We also assume that the vapor density in the 
bubble interior is negligible in comparison with the density of the gas, the distance between 
the centers of the bubbles is much larger than the characteristic diameter d I of the 
dendritic (structural) cell, and the diameter 2rp of the bubble itself is so small that the 
convective diffusion of the gas toward the bubble surface as a result of its ascension can 
be disregarded. The equations of continuity and momentum transfer have the following form 
in a spherical coordinate system attached to the center of the bubble [9]: 

a (r~/lu) = O; ( i )  

P ~ '+  T~!= ar Kp05) ~-V r~ - -2U,  

where u is the velocity of the liquid, fs is the cross section of the liquid phase (porosity), 
p is the pressure in the liquid, Kp(fs is the permeability of the heterogeneous zone, p 
is the density of the liquid, ~ is the dynamic viscosity of the liquid, and r is the radial 
coordinate. Equations (i) and (2) must be integrated subject to the boundary conditions on 
the surface of the bubble (r = rp): 
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U = r p ;  

p = p g  - -  2 z / r p  - -  4 t t ' r / r p .  

(3) 

(4) 

Here rp is the rate of change of the bubble radius, and pg is the gas pressure in the bubble 

interior. We assume that the concentrations of the alloying component (CI) and the gaseous 
component (C 2) far from the bubble (r + =) are related to the cross section fs of the liquid 
phase by Scheil's rule [I]: 

c~ = c . / ~  -k~, (s) 

Where k i is the distribution coefficient of the i-th component. Neglecting the influence of 
dissolved gas, we specify the liquidus temperature in the form of a linear function of the 
concentration CI: Ts = T A - ~ioCi. It follows from the quasiequilibrium condition [I, 2] 
that 

r = TA - ~oC~. (6) 

We obtain from Eq. (5) with i = 1 and from Eq. (6) 

T A - -  r l O ~ ! / ( 1 -  kl) ( 7 ) 
i ,= r-~--_T i , 

where T~0 = T A - ~10Cz0. 

We assume for definiteness that the cooling rate of the melt v T = ST/St = const, so 
that 

T = 2 z o - - v r t .  (8) 

Then from Eq. (7) with allowance for (8) we have 

/t(t) = [l + (UT/ATo) t] -i/(1-hO, ATo= T a - - T z o .  (9)  

Integrating Eqs. (i) and (2) subject to the boundary conditions (3) and (4), we obtain 

u = r~r,/r~; (io) 

�9 " 3 "2 r h% + 4 l .  2~ p ~ - p ~  
r~'p + T '~ + ~[~ ~j r~ + --p,~ = p (n) 

Here p~ is the pressure far from the bubble, which is equal to the sum of the gas pressure 
above the surface of the melt and the metallostatic pressure at the level of the bubble, 
and ~ = ~/p. 

The distribution of the concentration of the gaseous components in the liquid 
surrounding the bubble is given by the convective diffusion equation [9], which we write 
with allowance for Eqs. (9) and (i0) in the form 

egt -1- rS Or = " ~ r l  --d';-r ] -1- |-~cvTt/AT o C2, k ~ - ~ - ~  (12) -- - - - -  I --k I" 

We augment this equation with the initial and boundary conditions 

C~ I,'-,.| = C,~o il + vrtlATo) k*, (14) 

where fs is the cross section of the liquid phase at the instant tp of nucleation of the 
bubble and is determined from the condition 
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pg~ (tp) = p| + 2(r/r*p ( 15 ) 

The gas bubble in the radius is related to the saturated 
s law 

(r* is the critical bubble radius). 
ga~ concentration on the bubble surface according to Henry's law (j = i) or Sievert' 
(j = 2) : 

c (r~, t )=  Zqp~/~, t >~ t~. (16) 

From relations (5), (15), and (16) we find 

Ii = + 

and from Eq. (9) with allowance for the latter expression, 

tp = ~ {[C~olKj (por '4- 2cr/rv)UJ] k* --  1}. ( 17 ) 

In the derivation of the expressions for fs and tp we have assumed that if the melt is an 
undersaturated gas solution in the initial state, the gaseous components are displaced into 
the surrounding liquid during the crystal growth process as a result of their weak solubility. 
The concentration C= then increases according to the law (5), attaining its saturation value 
at the time tp. The nucleation of a gas bubble characterized by the equilibrium (critical) 
value of the radius r* is possible in this case. The boundary condition on the bubble sur- 

P 
face follows from the equation for the conservation of mass M of the gas inside the bubble: 

ac~ I (18) dM FD~p 

Since M=(4~/3)ravpg, F=4~r~, and the density O of the gas in the bubble is related to the 
pressure pg by the ideal-gas equation of state pg = pg/RgT(t), after simple transformations 
we obtain from Eq. (18) 

We have thus reduced the problem to the solution of the system (ii), (12) subject to the 
conditions (13), (14), (16), (19). 

The presence of the moving unknown boundary rp(t) complicates considerably the integra- 
tion of the convective diffusion equation. We therefore transform to the new space variable 

3 3 3 �9 ~ = (r - r~)/3rpo, ~ ~ [o, ~), 

where rp0 i s  t he  i n i t i a l  bubb le  r a d i u s ,  t he  v a l u e  of  which can d i f f e r  from r* in the  g e n e r a l  
P 

case .  Adopting rp0 ,  to = rp0/D2,  C20, ATe .as t he  s c a l e s  f o r  the  co r r e spond ing  p h y s i c a l  

q u a n t i t i e s ,  we w r i t e  Eq. (12) s u b j e c t  t o  t he  c o n d i t i o n s  (13) ,  (14 ) ,  ( 15 ) ,  (19) in the  
dimensionless form 

aC a [(R3+ 3~ ~.~] (20) ~ )4/3 § k*w c .  
-- = �9 t q-wx ~' 

k* C(L~p)=(t  + ~ , )  ; (21) 

C(oo,x) = (t + wx) h*, "~ >'rv;  (22) 

+ (23) 

C(O, X) ----- ~ijP~ Ij, 0 (T) ~- 0.4. -- t -- w~, OA = TA/ATo, (24) 

where C = C,/C2o; R -~ rp/r~o; T ---- t/to; Ki = KiP~/J/C~O; w ---- vyto/ATo; P, Pg/Po; Po -~ RgPC20/~T0 �9 The 

expression for Pg follows from (ii): 

l f l  + h + -~- + KD(RR + 3h~/2). (25) Pg = P= -4- K~ Km (f l-'----~ 
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Here  P~ = P ~ 0 ;  Ka = ~ 0 t 0 ;  KD = P(D/%o)2/Po; Ka = 2o/%0P0; Kv~ = K,/r~o. 

I n f l u e n c e  o f  an A l t e r n a t i n g  E x t e r n a l  P r e s s u r e  on t h e  E v o l u t i o n  o f  a B u b b l e .  We c o n s i d e r  
t h e  d y n a m i c s  o f  t h e  b e h a v i o r  o f  a g a s  b u b b l e  i n  a h e t e r o g e n e o u s  r e g i o n  when d i f f u s i o n  p r o -  
c e s s e s  can  be n e g l e c t e d  and t h e  p r e s s u r e  p~ in  t h e  l i q u i d  v a r i e s  w i t h  t i m e  as  

p ~  = p ~  - -  pesin ~( t  - -  tv), (26)  

M6reover, we assume that the gas in the bubble interior obeys the adiabatic law 

Pg = PgO (rpo)rp) 3v, Pgo = P% + 2~/rpo 

(y is the adiabatic exponent). In this case the problem reduces to the solution of Eq. (ii) 
in conjunction with (26) under the initial conditions at t I = 0 

%(0) = %0, ~(0)  = 0. (27)  

Here and elsewhere we refer time to the instant tp (tl = t - tp). We note that Eq. (ii), in 
contrast with the familiar Rayleigh equation,.contains not only the Stokes resistance 
(4Vrp/rp), but also the additional term ~fs163 which characterizes the filtration 
resistance and depends on Kp and fs 

Assuming below that the crystals have a spherically symmetrical shape, we determine the 
permeability of the heterogeneous region according to [i0 

Kv = ~o~/0  - -  h)  '/3, ~o = d~/64. (28)  

We investigate the case of small deviations of the bubble radius from its initial position, 
/0 assuming that Pe P~ << !. Let 

rp = rpo(l -t- (p), I(Pl << i .  

To within first-order terms, Eqs. (Ii) and (27) in conjunction with (26) and the latter 
relations acquire the form 

&>--+ 3' ' ~  
Pr~0 [ + - - - -  (P = - - 7 - -  s i n o t ~ ,  rpo 3?rpo pr~0 

(o) = 0, + (o) = 0. 

Equation (29) describes the forced oscillations of the system with a variable dissipative 
force N 28 = v[/~(t)/Kp(fZ)~- 4r~0 ] Inasmuch as ~ > 0, the oscillations of the bubble are 

bounded as t I + ~ [ii]. For sufficiently small cooling rates (v T << AT0~/2~) the variation 

of the quantities rE, Kp(fs during a time t ! 2~-I can be neglected, and we can set 

]t = hp = (~ + w%p) -I~(1-kl), Kp(/Ip) = Kp0 = const The damping factor is readily estimated in 

this case: 

80 = 2-% [hp/Kpo + 4/r~o], (30) 

along with the natural frequency of the bubble: 

{3? [p~ + 2o(37--I)]__8~}a/2 (31) 
~ o =  P-~p0[ " 3?rp~ 

The e f f i c i e n c y  o f  t h e  e x t e r n a l  a c t i o n  on t h e  gas  b u b b l e  depends  on t h e  n e a r n e s s  o f  t h e  
o s c i l l a t i o n  f r e q u e n c y  o f  t h e  p r e s s u r e  f i e l d  t o  t h e  n a t u r a l  f r e q u e n c y  o f  t h e  b u b b l e .  Us ing  
r e l a t i o n s  (30)  and  ( 3 1 ) ,  we g i v e  n u m e r i c a l  e s t i m a t e s  o f  6o and ~0 f o r  t h e  a l l o y  Fe + C, 
specifying rp0 = 10 -5 m, fs 0.5, Kp0 = 10 -11 m 2 0= = , y = 1.4, and p~ i.i'i0 N/m 2. The 

physical parameters of the alloys are taken equal to v = 10 -6 m2/sec, p = 7.10 s kg/m 3, and 
o = 1.8 N/m. Carrying out appropriate computations, we find 60 ~ 4.5-104 sec -I and 
~0 = 1.4 "10s sec -l. It is evident from this result that the natural frequencies decay 
rapidly (t I ~ i0 -s see) and the bubble then oscillates at the frequency of the external 
field and with the dimensionless amplitude 
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= - , o , )  ' + 

where m~ = 37[p~ + 2q(37-- i)/3?rpo]/pr~o . With an increase in the filtration resistance [de- 
crease in K~(fs the damping factor increases, and the natural frequency decreases, tending 
to zero as ~0 + ~z. With an increase in the amplitude of the external pressure Pe the 
amplitude of the oscillations increases. Its maximum value corresponds to m = ~0. In the 
case of sufficiently high values of Pe, bubble collapse (implosion) is possible. The 
cavitation of a gas bubble in a liquid is known [12] to be accompanied by high stresses, 
the values of which can exceed the tensile strength of the dendrite branches and cause them 
to fracture. An effect of this kind can be utilized to enhance the dispersity of the pri- 
mary dendritic structure, which has a positive influence on the physical and mechanical 
properties of a solidifying metal. However, if the permeability of the zone in the given 
cross section is small and does not allow impregnation of the substance due to filtration 
of the melt, the resulting stresses can disrupt the integrity of the solidfying melt and 
lead to the formation of hot cracks. 

Initial Stage of Bubble Growth with Gas Diffusion. We first consider the behavior of 
a gaseous inclusion in a constant pressure field (~ = 0) at small times (t << r2/D), when 

P 
the perturbation of the concentration C 2 is restricted to a thin boundary layer satisfying 
the condition r s - r 3 << r s. It is evident from the preceding analysis that the inertial 

P P 
forces in the case of slow processes (small e) and large dissipation in the system exert a 
weak influence on the behavior of the bubble in the zone,.and so we write Eq. (ii) in an 
approximate form, discarding the first two terms ~rp and r2: 

P 

v (]irp/Kp + 4]rp)~p,+ 2o/pr p = (pg - -  P~)/P (P~ : P%),* (32) 

which is equivalent to neglecting the inertial terms on the left-hand side of Eq. 
We set 

R = ~ / ~ o = l + ~ ,  I~l<<i .  

(2). 

(33) 

Substituting the latter in Eq. (32) and retaining only up to first-order terms, we obtain 
the following after conversion to dimensionless form: 

Pg = K, [4 + [ip/Kp([~p)]~ -- Ko~ q- P~ q- K~. (34) 

We take Tp = tp/t 0 as the origin of the dimensionless time ~, and we adopt the saturation 

gas concentration C=s at the time ~p as the new scale for the concentration C2: 

"~ pl/J (i + w~p) ~*. 
Here ~p is given by Eq. (17). 

Linearizing Eqs. (20)-(24) as �9 + 0, ~ ~ 0 and taking Eqs. (33) and (34) into account, 
we obtain 

'~ I~=o : i ,  C]~=o ---- -goP*'/J (i + Pgl/]P~o); (36)  

I~=-+  i + .w~,  [o~/a[]~=o = O;~dx ~)/d~, (37)  

where 

K * ~  �9 X = Pg .  ( t  + w2'r) -1= (3Pgo - -  Ka) r + i~r 

Pgi -- Kl~q)*" --:Koq), K*• = K.  [4 + ]lp/Kp (]tp)], 
P'go = (P| + Ko)I(P~ + K<,IR*), I t * =  r*~/rvo, 

, "C = C~/C~, w~ = k*w/(l  + w~p), w2 = w/O. ,  Op = O a  --  i --  u%,.. 

(38) 

(39) 

To solve Eq. (35) subject to the conditions (36) and (37), we invoke the one-sided 
Laplace transform, with the result 
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(~, ~) = (1 + w~) 

The solution (40) is written with allowance for the assumption wl~ << i, in correspondence 
with which exp(+_w1~) is approximated by a linear function exp(+w1~) % i + WiT. Setting 

= 0 in Eq. (40), we write the relation in the form of an Abel integral equation 

r (D d~, (41) F (~) = j , ~  
8 

where r (dx/d~)(i- Wl~); F(T)= V~[i- c(0, T)/(i-~ WlT)]/0p . If we consider F(~) to be a 
known function, we have the solution of Eq. (41) 

.t rF(O) i P' (~) d~]  

where the prime denotes differentiation with respect to ~. We write this result with 
allowance for the expression for ~(~) and the assumption w~ << I in the form 

dX l t + ~ F" (~) (t + w~) (42) 
d--? = =--~ L-"~-~-~ F (0) + d ;  . 

o 

I n t e g r a t i n g  Eq. (42)  w i t h  r e s p e c t  t o  ~ f o r  •  -- Pg0, ~ = ~ = 0 and making u se  o f  
e x p r e s s i o n s  (38)  and ( 3 9 ) ,  we f i n d  

K.~ + (3Pgo -- K~) ~ = -- w~Pgox -- (43) 

[' i i ] i F (~) d; 2W i F(~) V'%---~a; . 

-~ ~+~) ~ - - i - ~  0 

Here  F ( ~ ) ( V ~ / O p ) [ A C ~  * ' # "  (P*g~/J/]Pgo)(K*~cp'K6~p)]; h C ; = i - - - g o  , - -  P g o  w l ~  - -  . _ ] ) * l / j .  f (O)  ----- V ~ ~ " ~ C : / O p .  

R e g a r d i n g  t h e  r i g h t - h a n d  s i d e  o f  Eq. (43 )  as  a known f u n c t i o n  o f  t h e  v a r i a b l e  ~, we 
i n t e g r a t e  i t  w i t h  r e s p e c t  t o  �9 f o r  ~(0)  -- O, n e g l e c t i n g  s m a l l  t e r m s  <~3 and s e t t i n g  
(ia.o~) 2 << 1: 

r 2 a  I Ta/2 a2 T 2 - -  q - O  

o V ~ - ~  

K* 2AC*o/( VgOpK,) ;  a.~ uhPgo/K,; a, = p*g~/i/(]]/r~O, pgo). where  a o = (3Pgo- -Ka) /  ~; al = - * ----- 

We seek a solution of Eq. (44) by the method of successive approximations, taking 
= 0 as the zeroth approximation. Stopping with the second approximation, we have 

(44) 

[ 2al 1 

It is evident that in the isothermal case (w = ae = 0), when AC* = al = 0 (the initial 
radius rp0 is equal to the critical r;), the bubble is in an unstable equilibrium state. 

If rpo > r*p and it is dissolved if rp0 < rp,* consistent with [13]. Under nonisothermal 

conditions (x # 0, a2 ~ 0) for AC~0 = 0(rp0 = r~) the bubble is dissolved, i.e., an equili- 

brium state does not exist. Bubble growth is possible when rp0 > r*. 

Numerical Solution. We use a numerical procedure to solve the problem of bubble growth 
with allowance for diffusion transfer of the dissolved gas. Neglecting the inertial terms 
in Eq. (25), as before, we write the basic system (20)-(25) in the dimensionless form 

at -~ 3~ + Ra) va oc + k*w (45)  
t + w ( ~ p + T )  C, x - ~ x - - ~ p ;  

543 



~R = (Pg - -  P~o - - K o / R ) / [ K , , ( h R / K ~ ,  + 4/R)]; 

[3 (oA-o)  oc I w ~ . ] .  

R Ix=o -- i ,  Pg [~=o = Poo -}- K6, C ]~=o = t; 

Ch=o = K~P~/~ cl~-,~. = [l + w~/(l + w~)l ~*. 

(46) 

(47) 

(48) 

(49) 

We determine an additional relation governing the value of (8C/3~)~= 0 from Eq. (45). Bearing 
in mind that C is bounded and has continuous first and second derivatives with respect to 

in the domain ~ ~[0, ~), we multiply the left- and right-hand sides of Eq. (45) by e-%~ 
and integrate the result with respect to ~ from 0 to ~: 

(50) OC Ra ~/a OC 

+ ~c (R. +3D '/~ [4 - ~ (~.  + 3~)1} d~ 

(~ is a positive constant). We replace the semiinfinite interval of integration in relation 
(5) by a finite interval (0 ! ~ ! ~*), and we write the integrand as 

t [ (R  a +,3h)a/a c~--c ,  m~_~..~]~=,,]+~.CI~=oR(4_X.R,) (~=o),~ 
lo .=  ~-  h 

= r [ (R.+  c )l + 

+ LCa (3~k + Ra) '/a [4 - -  ~, (3~ + R3)]) ( 0  < u ~-<: u*~ 

(51) 

where h = E*/N; k = i, 2, ..., N; ~k = hk; C k is the value of C at the point ~k; and CN+I, 
CN+ = are determined by linear interpolation. Replacing the integration operation in Eq. 
(50) by summation according to Waddell's rule and carrying out a transformation with allow- 
ance for the expression for the integrand from (51) and the value of C[E=0 from (49), 
we obtain 

+ 

~c[ �9 ~o -7--~-'[ + h" + ~-~ ~=o = - -  -7" )~C 1.~=o (R" 3h)a/a C2 -- Ct 

+ 7s I~=o (4 - X.R") + 5 / / +  h + 61. + h + 5h ~ I. + NIs-t ] 
(l.k + 516k+t + l.~+~ + 6fl~+, +/,h+4 + 5Ie~+5 + [6k+8) �9 

h=l 

(52) 

The system (45)-(47) subject to the conditions (48), (49), (52) 
lines [14]. Accordingly, we approximate the derivatives in Eq. 
finite differences: 

is solved by the method of 
(45) by the corresponding 

[ reel] k'o i 3h)4/3 C 2 - -  C~ R4 ~ ~=o + l + u, (~p + ~) C~ = "T (tt8 + h Ck, 

[( !:~3 + 3~k) 4/" (Ck+l - -  Ch) - -  (R 3 -~ 3~h+1) 4/3 (C k - -  Ck_l) ] 3c 

k*w 
§ l + w ( ~ p + ~ ) C k ,  k = 2 , 3  . . . . .  N.  

These equations in conjunction with (46), (47), and (52) represent a system of ordinary 
differential equations, which we have solved numerically on a BF.SM-6 computer by the Runge- 
Kutta method. 

As an example, we consider the behavior of a gas bubble in a heterogeneous zone of the 
alloy Fe + 0.5% C + 2"10 -a H 2. The initial data are k* = 1.276, p~ = i.i'i0 N/m 2, o = 1.85 
N/m, 9 = 10 -6 m2/sec, D 2 = 1.2-10 -7 m2/sec, rp0 = i0 -s m, v T = 103~ Some results of 
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the computations are given in Figs. 1-3. Figure i shows the distribution of the relative 
concentration along the coordinate $ for T = 10 -3 and 2-10 -3 (solid and dashed curves) at 
fs = 0.2 and 0.3 (curves i and 2), Fig. 2 shows the variation of the dimensionless bubble 
growth rate R, and Fig. 3 shows the time variation of the dimensionless values of the bubble 
radius R and the gas pressure pg = Pg/Pa in the bubble interior for rp0/r ~ = 1.025, fs = 
0.2 and 0.3 [curves i and 2; the solid lines correspond to the.inclusion of inertial terms 
in Eq. (ii)]. It is evident from Fi~. 2 that the growth rate R increases in the initial 
stage according to a law close to J~ and then diminished quite rapidly after attaining a 
certain maximum, tending to zero as �9 § ~. The characteristic period of the evolution of 
this process is ~3"I0 -s sec. The bubble radius increases by a factor of ~6 during this time. 
The influence of the cooling rate for values of v T 9 !0 ~ ~ is only slightly manifested 
in the behavior of the bubble, because fs and Kp(fs vary insignificantly during the time 
%10 -s sec. The inclusion of inertial terms in the generalized Rayleigh equation (ii) has a 
significant effect on the bubble-growth dynamics for fs ~ 0.2, when the filtration resis- 
tance becomes sufficiently small (see Figs. 2 and 3). 
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FLOW OF MATTER ONTO THE SURFACE OF A CRYSTAL 

UNDER CONDITIONS OF TURBULENT NATURAL CONVECTION 

S. I. Alad'ev UDC 532.526 

In this work, the rate of growth of crystals from the gas phase under conditions of 
turbulent natural convection is determined. 

The flow of matter onto the surface of a growing crystal is caused by a gradient, 
created by a corresponding temperature gradient in the medium, of the concentration of the 
active component in the gas phase. This could result in natural convection, whose effect on 
the rate of growth of the crystal also depends on the orientation of the system. The 
growth of crystals in vertical cylindrical ampuls is studied below. In this case, unstable 
stratification must exist in the gas phase in order for natural convection to arise, and this 
happens, for example, when the source ("hot" surface) is situated near the substrate ("cold" 
surface). It is assumed below that the natural convection is turbulent. We note that the 
conditions necessary for this are partially realized in practice. Like in [i], it is assumed 
that the gas phase is a binary mixture of active and inert components. 

In the presence of turbulent pulsations the time-averaged rate of growth of the crystals, 
i.e., the velocity of the gas-solid interface, is given by the expression 

, ' t , '  ) ( 1 )  ~=-~. Iv., T<pv~>, 0*>p. 

Here p and v n are the average density and the component of the velocity of the gas phase 
normal to the front; p* is the density of the crystal (p* = const); and the prime indicates 
pulsation. Thus in order to find ~ it is necessary to know the velocity distribution in the 
gas phase and the correlation <p'v~>. We shall confine our attention to the case when the gas 
density is a linear function of the temperature T, p'/p = -~T' (6 is the coefficient of 
volume expansion). 

As the crystals grow the radial variation of the average temperature T is negligible 
compared with the variation along the axis. In addition, the Reynolds numbers, constructed 
based on the average velocity of the directed flow, are low (Re % i). Thus in this case the 
turbulence is determined by the effect of thermogravitational forces only. Under these 
conditions the balances of the second moments of the pulsations of the velocity and tempera- 
ture [2, 3], written in the Boussinesq approximation, have the form 

+~ p ] 1 2 / .  ' U ' x  ' , = +~ ~++]+++<v~r> 0, (2) 

k ~ 1 / 2 / J r '  \ = ~ - E  1/~ ' ~ " T ~  \ ~ +]  4 ~ g < v ; r ' >  o,  = 
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